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Abstract The superconducting behaviour of highly disordered bulk electronic systems close 
to the metal-insulator transition (MIT) is considered. It is argued that these systems are hshated 
even in the absence of a magnetic field. If disorder fluctuations ax larger than some a'itieal 
value a superconductor glass phase is predicted. Technically the results are based on ?houless- 
Anderson-Palmer-like mean-field equations that ax derived to describe the proposed glass 
transition. 

During the last 10 years glassy phases in granular superconductors [I, 21 and high-T, 
superconductors (vortex glass [3]) have been proposed. In both of these systems the 
existence of a magnetic field played an essential role for the formation of the glass. Here 
we show that under special circumstances disorder fluctuation in disordered superconductors 
can cause a glass phase even in the absence of a magnetic field. (For related work see [4,5] .) 

It is currently believed that a necessary condition for the formation of glasses is the 
presence of frustration in the system under consideration. Frustration was introduced as a 
concept to clarify the physics behind the spin glass transition [6]. Its main effect is the 
prevention of a conventional macroscopic ordered state. In spin glasses, e.g., ferromagnetic 
and antiferromagnetic order is destroyed. In general  frustration^ is not sufficient to cause 
a glassy state. Without disorder the transition temperature is typically zero [7, 81 or the 
formation of a frustrated but periodic macroscopic state is observed dependent on the model 
[7, 91. In nature, frustration and disorder are not independent entities. In simple spin glass 
models [lo] the change from a ferromagnetic transition to a spin glass transition is caused 
by increasing the width of the distribution of coupling parameters, i.e., the disorder. Here 
we argue that in the problem of superconductivity in strongly disordered interacting systems 
a similar situation arises if the metal to insulator transition (MIT) is approached. 

In this letter we first give a heuristic argument for why a~glassy phase is expected in 
general. Then a more technical derivation is presented. We begin by noting that non- 
magnetic disorder i s  able to suppress superconductivity in interacting electronic systems 
[ll]. The basic idea is that disorder decreases the diffusivity of the electrons. Consequently 
two electrons spend more time around each other, which in turn effectively increases the 
Coulomb pseudopotential between the electrons. The net result is that the BCS pairing 
potential, r, is effectively decreased. This effect is largest at long length scales because 
the diffusion process is a long-wavelength phenomenon. This implies that with increasing 
disorder, Pa becomes too small to sustain macroscopic superconductivity even though 
locally a superconducting state is preferred, i.e., the system is frustrated-on long length 
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scales. The connection to the conventional concept of frustration can be made clearer if 
we consider the effective-field theory describing the Tc suppression mechanism [12]. An 
effective partition function for a given realization of the disorder can be derived, completely 
analogous to [12, 111. It is given by 

Z = D(A*,  A) exp -p d z  A*(z)A(z) + $h(T) d z  ( A * ( ~ ) A ( Z ) ) ~  I I 
The spin singlet BCS interaction term r is treated explicitly. The effects of Coulomb inter- 
action and disorder are contained in ?“@, 2‘) = (Y(z, n)Y*(d, -n)Y(z, -n)Y*(z’, n) )  
and in principle in h(T). The thermodynamic average in C(z, 2’) = En &(e, z’) is over 
a reference system without a bare Cooper interaction and Y(z, n)  is the Grassmann vari- 
able at spatial point z and Matsubara frequency U, = (2n + 1)lrT. The summation over 
frequencies is cut off at the Debye frequency OD. In deriving (I)  the complex auxiliary field 
A(z) was restricted to the lowest Matsubara frequency A@) = A(%, n = xT) ,  which is 
appropriate for a qualitative description of glasses in quantum systems 1131. In this paper 
we focus on fluctuations in C(z, z’) only and therefore h(T)  is taken to be the disorder 
averaged quantity. Since we are interested in very low-temperature phenomena we use 
[14, 151 h ( ~ )  = 2 ~ ( ~ ~ / ~ ~ ) 7 / 8 1 ( 3 ) r ~ f ( ~ )  (f(~) o( I/T* .for T --z CO, f ( ~ )  = o(1) 
for T + 0), with NF the density of states at the Fermi level. 

In the disorder-averaged theory the saddlepoint of Z gives the Landau free energy 
for superconductivity. r-’A(z) = AGap is the Bcs order parameter for homogeneous 
superconductivity. Treating the disorder renormalization carefully (for a review see 
[ll]) the disorder average j ”c (z )dz  = r(q = 0) can be calculated. Schematically, 
C(q = 0) = l0g(oD/T)/(2N~ + 6r log(W/T)) Jo. where U is the renormalization to 
the BCS coupling r due to disorder and electron-electron interaction. The condition for the 
transition temperature is therefore given by 

For the qualitative physical discussion let us assume for the moment that also for the 
non-averaged 2 the essential physics is represented by the ordinary saddle point. Later we 
show that this i s  not quite correct. The implicit equation for the transition temperature Tc is 
then A(z) - r-’ i d 3 z ’ ( q l z  - z’l) $ K ( z ,  z’))A(z’) = 0. Here C(z, z’) is split in an 
obvious way into disorder-averaged and fluctuation parts. It is a Hermitian matrix and can 
be written as E(z ,  d) = ISC(z, =’)I exp i@(z, z’). The phase @(z, z‘) and the amplitude 
are random quantities due to the disorder. Note that the quenched random phase O(z, E‘) is 
not a function of 1% - 2’1 alone but depends on z, I’ separately. For the critical behaviour 
it is essential that the random phase cannot be written as 41(z) - 42(z’), which would 
lead to a uniformly frustrated X-Y spin glass by performing a gauge transformation as in 
the Mattis spin glass model 11-51, The uniformly frustrated X-Y spin glass was suggested 
for inhomogeneously disordered superconductors in [5], which also discusses the possibility 
of glassy behaviour in the absence of a magnetic field. In contrast to [5] in our case the 
interplay of disorder and the electron interaction causes a quenched random phase [17]. An 
eventual glass transition belongs therefore to the gauge glass universality class 118, 191. 

The condition for the transition temperature is det(r-’S(z - z’) - C(z,  d))= 0. It is 
sufficient that the largest eigenvalue of C(z, 2’) is equal to r-I. In general the eigenvalue 
cannot be calculated. To proceed, we take advantage of 6C being a random quantity with 
respect to different realizations of the disorder. Therefore it is reasonable to approximate 
X ( z ,  2‘) as a random matrix in the mathematical sense 1221. This approximation will 
enable us to arrive at a quantitative estimate of the effect of disorder fluctuations close 

- 

- JO = 0. 
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to the MIT. The largest eigenvalue of C(1z - 1‘1) is JO (corresponding.to the eigenvector 
A(=) = A, independent of z). Since we are only interested whether the disorder effects &e 
able to dominate the average behaviour it is sufficient to concentrate only on this eigenvalue, 
neglecting all other (smaller) eigenvalues. In this case the eigenvalue spectrum of C(z, e’) 

consists of the Wigner semicircle with radius 23 = (Z/&) idz’SC(z,  z’)8C(z‘, z) and 
an isolated eigenvalue at J ( J o / J  + J / J o )  if JO 2 J. If J < JO the spectrum is given by 
the Wigner semicircle alone 1201. The result for J was derived in Fourier space for finite 
volume and then expressed in spatial integrals. R is the electron density. 

The two cases JO > J and JO -= J describe two qualitatively different regimes. 
For JO > J the isolated eigenvalue is the largest,one. The disordered system transition 
temperature Tp satisfies rJ0 % 1 - (rJ)’ (we will see later that this is not quite the correct 
equation to order J’). The resulting phase can be considered as a superconductor with small 
spatial variations of the order parameter, if J << Jo [21]. With increasing disorder 6I‘ and 
J are increasing, JO is decreasing. If the increase in Sr is stronger than the increase in J ,  
at some disorder the condition W/r = 1/(1 - ( r J ) Z )  is fulfilled. This leads to T,” = 0. 
The superconductivity is completely suppressed. Experimentally these are the cases, where 
the suppression of Tc is not too close to the MIT and therefore r J usually can be neglected. 

A qualitative new situation develops if JO < J .  In this case the eigenvalue spectrum 
of C(z,z’) is symmetric and d s o  the distribution of the eigenvectors is symmetric 
under very general mathematical conditions [ZZ]. The real and imaginary parts of A(=’) 
are therefore positive or negative with equal probability for different realizations of the 
disorder, i.e. m(z) = 0, but there is a non-vanishing Edwards-Anderson order parameter 
(A*(z))(A(z)). This means physically the resulting phase is a superconductor glass with 
zero energy gap. Since we know that disorder fluctuations become large close to the MIT 
(for a review see [23]), we expect J to increase when the MIT is approached. Therefore 
if the new phase exists it is most likely to be found near the MIT. On~general grounds it 
cannot be decided whether there is a direct transition from a disordered superconductor to 
the superconductor glass by increasing the disorder, or whether there is a gap between the 
superconductor phase and the emergence of the glass. 

To discuss these ideas on a more quantitative level, we derive a mean-field theory, 
which is at least correct to order 5’. We show that in principle J can become large enough 
to create a glassy phase. The mean-field theory given here is analogous to the Thouless- 
Anderson-Palmer [XI mean-field theory for spin glasses. Starting from (1) it is easy to 
derive TAP-like equations using a method proposed by Plefka [Z]. Two source fields Y*(z) 
and Y(z) which couple to A(z) and A*@) respectively are introduced and a Legendre 
transformation is performed B W = - log Z+J dz(A*)(z)Y (z) +I dz Y*(z) (A) (z). (. . .) 
indicates a thermodynamic average for a given realization of the disorder. W is expanded 
around the local energy contribution: r-’ J d z  A*(z)A(z) + iTh(T)Jdz  (A*(z)A(z))’ 
up to second order in C(z, z’). After using a saddlepoint approximation for the local 
reference system with source fields the free energy functional becomes 1171 

(( ...)) is the second thermodynamic cumulant calculated in the local reference system. 
Contributions from thermodynamic fluctuations (leading to a shift in the superconducting 
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transition temperature), local temperature fluctuations (SC(z, E)) and terms which do not 
contribute to the equation for the transition temperature (higher order in (A)) are neglected 
in (2). They do not change the qualitative conclusions. The condition for linear stability is 
given by SW/S((A)) = SW/S((A*)) = 0 

r-’ + T h ( T ) r 3  dd6C(r ,  z‘)SC(z’, I) (A)(z) - &‘C(I, E’)(A)(I’) = 0 ( s ~1 s 
and a similar equation for (A*)(I). In strongly disordered superconductors the typical 
scale for the variation of (A)(=) is the mean free path I .  h(T)  can therefore be written 
h(T) = (? + Sn/38)/(? + 8 ~ 8 ) ~  (8 = Dr/Zz, ? = T r ,  r is the elastic scattering time) 
using the approximation Daz/3x;(A)(z) w D/ZZ(A)(z). The eigenvalue equation, 

r-’ - Jo - J 2 / J o  + Th(T)r3nJ2 = 0 
r-’ - 2 J ~ +  Th(T)r3nJ2 = 0 

for J < JO 
for J > JO 

can now be solved if J is known. A simple qualitative reasoning reveals the structure 
of the necessary perturbation theory. For non-interacting electrons, C can be related to 
the diffusion process in an inhomogeneous system. Since .I2 - (SC)z, it  Is schematically 
given by (S[j”d3q c,, 1/(20, +Dqz)])’. The most singular part at the MIT is related to the 
fluctuation of the diffusion constant (or conductivity) in the denominator. In the perturbation 
theory terms up to (SDq:)(6Dq:) must be included. The most singular part is given by 
I171 

“s 

- 

(D(2: +q+ +o+r)(D(q22 + 432)“ + w t r )  
NF4n 41.42.4, *’ a,,, (Dq:r +O+r)Z(Dq,2r + o+r)z(Dq:r + 201r) (D& + 20zr)‘ 

The diffusons with frequency 01.02 respectively represent the contributions of the 
conductivity fluctuation at different frequencies [26]. It is interesting to note that the largest 
contribution can formally be written as J z  M T Z  E,,,, 6N(r l ,  o+)~ SN(rZ, w + ) ~ ,  where 
O+ = 0, + 02. The maximum eigenvalue is related to the product of the local density 
of state fluctuations at the different points. The divergent contribution to J 2  close to the 
MIT is, after integrating over momenta, M (r4/NF4)Tz E,,,,,,(D+r)-3(~+r)-’. We have 
introduced D+ = DoF(o+) as the diffusivity at Matsubara frequency O+ in the critical 
regime. Do normalizes the critical spectrum D+. An explicit expression,for F(o+) in 
interacting systems is not known. For non-interacting systems an approximate F(o+) can be 
determined in the region near the MIT [27]. It has the scaling form F(o+ E )  = fD*(u+/~~) ,  
with D*(x) = x1I3 for x + 0 and D*(x)  = constant for x + 00. E i s  proportional to the 
difference of the impurity density p from the critical density pc. In the explicit calculation the 
frequency integrals cannot be done analytically. At E = 0, J z  has a logarithmic divergence 
for T -+ 0. At T = 0, J z  diverges M l / ~ ~ ”  for E -+ 0. 

Figure 1 shows schematically the two generic phase diagrams. The strength of the 
disorder is given by some parameter p. Macroscopic superconductivity is suppressed at pc. 
The glass phase appears at ps. For pI > pc the glass and the macroscopic superconductor 
are separated as shown in the upper part of figure 1. For F(o+) given above a glass 
solution exists in leading order for ~ ( p )  < constant (~~r)~/3(rr/(~N~))~/3/(D~r)*. For 
p > ps the glass transition temperature first increases with increasing disorder. At the 
MIT (defined by u(T = 0) = 0) the transition temperature has to be zero again. Our 
methods for calculating J become invalid at the MIT of the reference system. Therefore 
we can only calculate the increasing part of the transition temperatwe in figure 1. The 
dashed line sketches the expected continuation of the transition curve. The glass transition 
temperature T, at the MIT of the reference system is in leading order (if T << OD) 
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l&re 1. Schematic phase diagrams. Tempemure T and d i ~ ~ ~ d e r  p are given in arbitrary 
units. Further explanation is given in the text. 

Tg/oD = 4 exp(-n2N:oo3r/(r/NF)’). The strong dependence on the scale DO in the 
argument of the exponential makes a reliable quantitative estimate impossible. If we 
take D0r sx lO/kp, the ratio of Debye energy to Fermi energy wD/6F = 0.01 and 
r/NF = 0.4 and if we assume an experimentally more appropriate form for the conductivity 
U(@,  E = 0) = O J ’ / ~  [28] the resulting transition temperature at E = 0 is in the millikelvin 
regime. Under the same assumptions but varying Dos between lO/kF and l/kF, 6(pLB) 
changes from O.M)05 to 0.3. Due to the approximation involved, these numbers are only 
estimates. 

In the lower part of figure 1 the scenario for pLB < pc is shown. The macroscopic 
superconductor crosses over to the glass phase at non-zero temperatures for p = psp psg 
is implicitly given by J0(Tg(fisg), W(pSs)) = .?(TE(fiSg), E(&) at the glass transition 
temperature Tg(psg). The theofy does not allow for a superconductor to glass transition for 
pLs < p e psg, since Jo(T) remains larger than J ( T )  for decreasing temperature at constant 
p. The macroscopic superconductor is unstable for 1.1 =. psg, since disorder fluctuations 
become more effective with increasing disorder. 

The aim of this paper was to discuss the possibility of a new glass phase in 
superconductors and to present the two possible phase diagrams. To actually discuss the 
critical behaviour of the proposed phase transition, the effects of thermal and quantum 
fluctuations need to be taken into account. If the fluctuations in the amplitude of SC(z, 2’) 
were irrelevant the proposed glass phase would be a continuum version of a gauge 
glass (randomly frustrated X-Y spin glass). [18] indicates that the gauge glass is a 
thermodynamically stable phase in 3D (see also [29]). Our’calculations suggest that this glass 
phase i s  realized in disordered superconductors due to the fluctuations in the random phase 
(gauge) of SC close to the MIT for low enough temperature. Experimentally we expect the 
usual scaling at the gauge glass transition. Since the gauge glass is in a different universality 
class than BCS superconductors (X-Y universality class) [19] the critical exponents are 
different. Consequently it should be possible to clearly distinguish between conventional 
gapless superconductivity and the glass phase proposed here. 
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